Chapter 7

on is defined by two or more different

The following graph is called a <u>piecewise function</u> because the function is defined by two or more different equations applied to different parts of the function's domain.

Notice that it appears to be composed of three segments, each a different linear function over a particular domain. Please note a filled circle includes that point, while an open circle does not include that point.

o Not included >, ∠ ()

1. What is the domain for the first (left) segment? [-6,-3] the range? [1,4)

2. What is the domain for the second (middle) segment? (-3, 4) the range?

3. What is the domain for the third (right) segment? $\boxed{ 14,8 }$ the range? $\boxed{ 16,-2 }$

4. How many equations do you think you would have to use to write the rule for the following piecewise function?

> or rows @ one

Notice that it appears to be composed of two rays, each a different linear function over a particular domain.

* Infinity always has parenthesis *

5. What is the domain for the first (left) ray? (-\omega, 3) the range? (1), \omega)

6. What is the domain for the second (right) ray? [3,00] the range? [4,00]

$$f(x) = \begin{cases} 2x & , -5 \le x < 2 \text{ where} \\ 5 & , 2 \le x \le 6 \text{ horizontal} \end{cases}$$

1. Complete the following table of values for the piecewise function over the given domain.

merelly.	a violen sai	(f)	721
/	X	f(x)	29
	-5	-10	0
12.	-5 -3	-6	0.00
184	0	0	
May ?	1	2.	
michion,	1.7	3.4	
	1.9	3.8	
	2	4	0
	2	5	0
(2.2	5	37
2.4	4	5	
My 7	6	5	0
1500			_

- 2. Graph the ordered pairs from your table to hand sketch the graph of the piecewise function.
- 3. How many pieces does your graph have? A Why? A equations
- 4. Are the pieces rays or segments? Segments Why? don't Contain oo
- 5. Are all the endpoints solid dots or open dots or some of each? SOM O Why?
- 6. Were all these x values necessary to graph this piecewise function, or could this have been graphed using less points?
- 7. Which x values were "critical" to include in order to sketch the graph of this piecewise function?

-5,2, 6, these are the constraints of the functions. $f(x) = \begin{cases} x+3 & , -8 \le x < 1 \end{cases}$ they tell you where to stop \$ 8 tart.

- 8. $f(x) = \begin{cases} x+3 & ,-8 \le x < 1\\ 10-2x & ,1 \le x \le 7 \end{cases}$
 - a. Make a table of values for the piecewise function over the given domain.

x	f(x)	
-9	-5	0
1	4	0
	8.	0
7	一十	0

- b. Why did you choose the x values you placed into the table? Constraints given
- c. Graph the ordered pairs from your table to hand sketch the graph of the piecewise function.

- d. How many pieces does your graph have? 2 Why? 2 Auchons
- e. Are the pieces rays or segments? Algments Why? 104 Contain 00
- f. Are all the endpoints filled circles or open circles or some of each? Why?
- g. Was it necessary to evaluate both pieces of the function for the x-value 1? $\frac{ye}{x}$ Why or why not? $\frac{y}{x}$ Order to Create the Segment
- h. Which x values were "critical" to include in order to graph this piecewise function? Explain.

They tell you were to Stop & Stop me graph

Complete a table of values for the piecewise functions over the given domains.

9.

$$f(x) = \begin{cases} 2x+4 & -10 < x < -4 & \text{seg} \\ \frac{3}{2}x-1 & \text{if} & -4 \le x < 2 & \text{seg} \\ -x+5 & x \ge 2 & \text{range} \end{cases}$$

x	f(x)	_
-10	-16	O
-4	man Lafa	0
-4	-7	•
2	a	0
2	3	0
5	0	->

Writing Equations of Piecewise Defined Functions

The EASIEST equation to write is that of a horizontal line. The equation of a horizontal line is always written like this: y = b, where b is the y-intercept. So the equation for the TOP line at the right would be y = 2 with a restricted domain of $1 \le x \le 5$.

The line at the bottom of the graph is y = -4 with a domain of $-5 \le x \le 3$.

This equation is linear. You can see where the line crosses the y-axis (the **y-intercept** or **b**) and you can easily count the slope of the line (**m**). This will allow you to write the equation in slope intercept form (y = mx + b). The graph at the left is y = 2x + 1 with a domain of $x \ge -2$.

$$y = mx + b$$

Sometimes you don't have a y-intercept that is an integer, or the y-intercept cannot be seen on the graph. You always have a y-intercept unless the line is vertical. If this is the case, then you have to use point slope form. This requires you to know the slope of the line and 2 points on the line.

The graph at the right has a y-intercept that you can see, but it is not one that you can readily determine. You never want to guess what the y-intercept is if it is not an integer.

So we will use the point-slope formula to determine the equation of the line.

Point-slope Form:
$$y - y_1 = m(x - x_1)$$

Step 1: Find the slope of the line. You can either....

- **a.** count rise and run $m = \frac{rise}{run}$
- **b.** use the two endpoints and slope formula $\frac{y_2 y_1}{x_2 x_1}$

$$y-2 = \frac{1}{2}(x-1)$$

$$y-2 = \frac{1}{2}x - \frac{1}{2}$$

$$y = \frac{1}{2}x + 1\frac{1}{2}$$

$$y = \frac{1}{2}x + 1\frac{1}{2}$$
 $-3 \le x \le 1$

$$y = a(x-h)^2 + K$$

week (0.1)

Math III H Intro to Piece-Wise Functions $y = a(x-h)^2 + k$ Write equations for the piecewise functions whose graphs are shown below. Include the domain for each equation.

$$f(x) = \begin{cases} x + 1 \\ \frac{2}{3}x + \frac{1}{3} \end{cases}$$

if
$$\chi = 2$$

3.

$$y - 1 = \frac{1}{2}(x - 1)$$

 $y = \frac{1}{2}x - 0.5$

$$f(x) = \begin{cases} \chi + 2 & \chi \leq -2 \\ \chi + 3 & \text{if } 2 \leq 2 \\ y_{2} + 0.5 & \chi \geq 1 \end{cases}$$

$$if_{24} \times 40$$

$$f(x) = \begin{cases} 1 & 0 \le X \le 2 \\ 3 & \text{if } \le X \le 4 \\ 5 & \text{if } \le X \le 6 \end{cases}$$

5.

$$f(x) = \begin{cases} x - 3 & x \le 1 \\ x + 1 & x > 1 \end{cases}$$

6.

$$(x) = \begin{cases} -x & x < -1 \\ -2 & -1 \le x < 2 \\ 2x & x \ge 2 \end{cases}$$

