3

Final Exam Review #1

1. Which expression is equivalent to $(x+2)^3 - 3x(x-5)$?

A.
$$x^3 - 3x^2 + 15x + 8$$

B.
$$x^3 + 3x^2 + 3x + 8$$

C.
$$x^3 + 3x^2 + 27x + 8$$

D.
$$x^3 - 3x^2 + 15x - 8$$

2. Which is an equation of a parabola that has a directrix of y = -3 and a focus at (3, -1)?

A.
$$y = \frac{1}{4}(x+3)^2 - 5$$

B.
$$y = \frac{1}{4}(x-3)^2 - 2$$

C.
$$y = \frac{1}{4}(x-3)^2 + 8$$

D.
$$y = \frac{1}{4}(x+3)^2 - 2$$

3. The graph of the function $f(x) = \sqrt{x}$ will be shifted left 4 units and up 23 units.

Which is the function that corresponds to the resulting graph?

$$A \qquad f(x) = \sqrt{x+4} + 23$$

B
$$f(x) = \sqrt{x-4} + 23$$

$$C f(x) = \sqrt{x+4} - 23$$

$$D f(x) = \sqrt{x-4} - 23$$

4. In the figure below, \overline{PR} and \overline{SR} are tangent to circle O.

If OT = 10 cm and PR = 32 cm, what is the length of \overline{OR} ?

- A. 30.40 cm
- B. 43.17 cm
- C. 32 cm
- D. 33.53 cm
- 5. In the figure below, the larger circle has a radius of 6 cm, and the smaller circle has a radius of 2 cm.

What is the approximate area of the shaded region?

- A. 34.56 cm^2
- B. 3.84 cm^2
- C. 30.72 cm^2
- D. 38.40 cm^2

- 6. Which choice shows the solution to the equation $5x^2 + 7x = -6$?
 - $A \qquad \frac{7 \pm i\sqrt{71}}{10}$
 - $B \qquad \frac{-7 \pm \sqrt{71}}{10}$
 - $C \qquad \frac{7 \pm \sqrt{71}}{10}$
 - $D \qquad \frac{-7 \pm i\sqrt{71}}{10}$
- 7. What value of h is needed to complete the square for the equation

$$x^{2} + 16x + 20 = (x - h)^{2} - 44$$
?

- A -8
- B 8
- C 64
- D -64
- 8. Which expression is equivalent to $\frac{\csc \theta}{\sin \theta + \cos \theta \cot \theta}$?
 - A $\tan \theta$
 - B $\cos \theta$
 - C $\sec \theta$
 - D 1
- 9. Which expression is equivalent to $(5-4i)^2 + (4+2i)$
 - A 45 + 2i
 - B 13 + 2i
 - C 13 38i
 - D 13 + 38i

- 10. William put the tip of his pencil on the outer edge of a graph of the unit circle at the point (-1, 0). He moved his pencil tip through an angle of $\frac{5\pi}{3}$ radians in a clockwise direction along the edge of the circle. At what angle of the unit circle did William's pencil tip stop?
 - A $\frac{\pi}{3}$
 - $B \qquad \frac{5\pi}{6}$
 - $C \qquad \frac{7\pi}{6}$
 - D $\frac{4\pi}{3}$
- 11. What is the inverse of $f(x) = 7 4^x$?

A
$$f^{-1}(x) = \frac{7-x}{4}$$

B
$$f^{-1}(x) = \frac{\log(7) - x}{\log(4)}$$

C
$$f^{-1}(x) = \frac{\log(7-x)}{\log(4)}$$

D
$$f^{-1}(x) = \frac{\log(7-x)}{4}$$

12. The volume of a rectangular prism is represented by the expression $(x^3 + 4x^2 - 11x - 30)$. If the length is (x + 2), which of the following could be an expression for the width?

A
$$x-5$$

B
$$x-3$$

C
$$x+3$$

D
$$x-2$$

- 1) What is the solution set of the equation $\sqrt{2x-4} = x-2$?
 - a. $\{-2, -4\}$
 - b. $\{2, 4\}$
 - c. {4}
 - d. { }
- 2) What is the period of the graph $y = \frac{1}{2} \sin 6x$?

 - a. $\pi/_6$ b. $\pi/_3$
 - c. $\pi/2$
 - d. 6π
- 3) What is the solution set of the equation $\frac{30}{x^2-9} + 1 = \frac{5}{x-3}$?
 - a. $\{2, 3\}$
 - b. {2}
 - c. {3}
 - d. { }
- 4) Max solves a quadratic equation by completing the square. He shows a correct step:

$$(x+2)^2 = -9$$

What are the solutions to his equation?

- a. $2 \pm 3i$
- b. $-2 \pm 3i$
- c. $3 \pm 2i$
- d. $-3 \pm 2i$
- 5) If $g(x) = \frac{1}{2}x + 8$ and $h(x) = \frac{1}{2}x 2$, what is the value of g(h(-8))?
 - a. 0
 - b. 9
 - c. 5
 - d. 4

•

Name: _____

(Color by Number)

- 1) Given \triangle ABC with a perpendicular bisector \overline{AD} . CD = 4x + 9 and DB = 6x + 4. Find the length of \overline{CB} .
- 2) The battery lifetime is normally distributed for large samples with a standard deviation of 70 days. If 16% of the batteries have a lifetime of 850 or higher, what is the average battery life?
- 3) The volume of a rectangular prism is represented by the expression $(x^3 + 3x^2 10x 24)$. If the length is (x + 4), and the width is greater than the height, find the width.
- 4) Solve for x: $\frac{x-3}{x+1} = \frac{2x-3}{2x+1}$
- 5) Given the circumference of a circle is 40π , find the area of a 60° sector of this circle.
- 6) Express in degrees an angle of $\frac{2\pi}{15}$ radians.

Color by Number Answers:

780 (WHITE)

x + 2 (BLACK)

24 (TAN)

209.44 (YELLOW)

38 (RED)

0 (GREEN)

^{*}You may color #'s 7-9 any color you wish!

1. Which expression is equivalent to $(x+6)^3 - 4x(x-2)$?

A.
$$x^3 + 18x^2 + 108x + 216$$

B.
$$x^3 + 14x^2 + 100x + 216$$

C.
$$x^3 + 14x^2 + 116x + 216$$

D.
$$x^3 + 22x^2 + 116x + 216$$

- 2. Suppose $p(x) = x^3 5x^2 8x + k$. The remainder of the division of p(x) by (x 2) is -24. What is the remainder of the division of p(x) by (x + 3)?
 - A. 44
 - B. -25
 - C. -44
 - D. -35
- 3. In 2004, Samantha wanted to invest some money into an account that would earn 4.36% interest, compounded continuously. What is the earliest year in which the value of her account would be at least doubled?
 - A. 2005
 - B. 2014
 - C. 2020
 - D. 2030
- 4. Which is an equation of a parabola that has a directrix of y = 3 and a focus at (1, 1)?

A.
$$y = \frac{1}{4}(x+1)^2 - 2$$

B.
$$y = \frac{1}{-4}(x+1)^2 + 2$$

C.
$$y = \frac{1}{-4}(x-1)^2 + 2$$

D.
$$y = \frac{1}{4}(x-1)^2 + 2$$

5. What value of h is needed to complete the square for the equation

$$x^{2} + 8x + 32 = (x - h)^{2} + 16$$
?

8

- Α
- B 4
- C -4
- D 16
- 6. Which expression is equivalent to $\frac{\cos\theta\sec\theta}{\tan\theta\csc\theta}$?
 - A $\cos \theta$
 - B $\tan \theta$
 - C 1
 - D $\sec \theta$
- 7. William put the tip of his pencil on the outer edge of a graph of the unit circle at the point (0, -1). He moved his pencil tip through an angle of $\frac{5\pi}{3}$ radians in a clockwise direction along the edge of the circle. At what angle of the unit circle did William's pencil tip stop?
 - A $\frac{\pi}{6}$
 - $B \qquad \frac{11\pi}{6}$
 - $C \frac{7\pi}{6}$
 - $D \qquad \frac{4\pi}{3}$
- 8. What is the inverse of $f(x) = 5 2^x$?
 - A $f^{-1}(x) = \frac{5-x}{2}$
 - B $f^{-1}(x) = \frac{\log(5) x}{\log(2)}$
 - C $f^{-1}(x) = \frac{\log(5-x)}{\log(2)}$
 - D $f^{-1}(x) = \frac{\log(5-x)}{2}$

- 1) Given \triangle ABC and \triangle EDC, with $\overline{AB} \cong \overline{EC}$, m<ABC \cong m<CED, and $\overline{BC} \cong \overline{ED}$. Which of the following is the reason for $\triangle ABC \cong \triangle CED$?
 - a. Side-Side-Angle Postulate
 - b. Angle-Angle-Side Postulate
 - c. Side-Side-Side Postulate
 - d. Side-Angle-Side Postulate
- 2) Fill in the (1) and (2) blanks of the two column proof.

Given: $\overline{BC} \cong \overline{DA}$; $\overline{BC} \parallel \overline{AD}$

Prove: $\triangle ABC \cong \triangle CDA$

Statements

Reasons

- 1. $\overline{BC} \cong \overline{DA}$; $\overline{BC} \parallel \overline{AD}$
- 2. $\overline{AC} \cong \overline{AC}$
- 3. <BCA ≅ <CAD
- 4. $\triangle ABC \cong \triangle CDA$

- 1. Given
- (1)
- 3. Alternate interior angles are congruent
- a. (1) = reflexive property; (2) = SSA
- b. (1) = alternate interior angles; (2) = SAS
- c. (1) = reflexive property; (2) = SAS
- d. (1) = symmetric property; (2) = ASA
- 3) You want to paint a wall that is in the shape of a rhombus. The wall has diagonals that are 5 meters and 15 meters. Deelux Matt Emulsion paint costs \$7.50 per meter square. How much will it cost to paint this rhombus-shaped wall?
 - a. \$75
 - b. \$562.50
 - c. \$281.25
 - d. \$140.63

- What are the radius and the coordinates of the center for the equation $(x + 2)^2 + (y - 5)^2 = 100$.
- a. center: (2, -5); radius = 100
- b. center: (-2, 5); radius = 100
- c. center: (2, -5); radius = 10
- d. center: (-2, 5); radius = 10

5)	A boomerang follows the trajectory
	of a parabola with the equation
	$y = 2(x + 6)^2 + 3$. What is the
	focus of this parabola?

6) If the equation of a circle is given by
$$(x + 6)^2 + (y - 3)^2 = 64$$
, what is the approximate length of an 80° sector?

a.
$$f(x) = x^2 - 6$$

b.
$$f(x) = x^2 - 7$$

c.
$$f(x) = 2x - 3$$

d.
$$f(x) = 9x + 20$$

$$y = |x - 3|$$
$$y = \frac{1}{2}x$$

What is the distance between the points of intersection of the system?

a.
$$\sqrt{6}$$

b.
$$\sqrt{20}$$

c.
$$\sqrt{48}$$

d.
$$\sqrt{80}$$

$$\begin{cases} x+2, & x<-1\\ x^2, & -1 \le x \le 2\\ 3x, & x>2 \end{cases}$$

What is the value of the expression f(2) + 2f(-5) - f(7)?

10) Let
$$f(x) = 14x^3 + 28x^2 - 46x$$
 and $g(x) = 2x + 7$. What is the solution set to the equation

$$\frac{1}{12}f(x) = g(x)?$$

1. Simplify
$$x^2 + 3x^3 - (2x^2 + 1)$$

a.
$$3x^3 - x^2 - 1$$

b.
$$3x^3 - x^2 + 1$$

c.
$$3x^3 + x^2 - 1$$

d.
$$3x^3 + x^2 + 1$$

2. Simplify
$$(6x^3 + 8x - 10) \div (2x - 2)$$
 using long division.

a.
$$6x^2 + 12x + 32 + \frac{54}{2x-2}$$

b.
$$3x + 7 + \frac{4}{2x-2}$$

c.
$$6x^2 - 12x - 4 + \frac{2}{2x - 2}$$

d.
$$3x^2 + 3x + 7 + \frac{4}{2x-2}$$

3. What is the equation of a polynomial with zeros
$$x = 2$$
, $x = -3$, and $x = 1$?

a.
$$x^3 - 5x^2 - 2x^2 - 6$$

b.
$$x^3 - 2x^2 - 5x + 6$$

c.
$$x^3 - 7x + 6$$

d.
$$x^3 - 2x^2 + 5x + 6$$

4. Describe the transformation of
$$x^2 + y^2 = 9$$
 to $(x+2)^2 + (y-3)^2 = 9$.

5. Simplify and state the restrictions:
$$\frac{x^2-4}{x^2+6x+9} \div \frac{x^2+4x+4}{x^2-9}$$

a.
$$\frac{(x-2)(x-3)}{(x+3)(x+2)}$$
; $x \neq -3, -2, 3$
b. $\frac{(x-2)(x-3)}{(x+3)}$; $x \neq -3$,

b.
$$\frac{(x-2)(x-3)}{(x+3)}$$
; $x \neq -3$

c.
$$\frac{(x-2)(x+2)}{(x+3)(x-3)}$$
; $x \neq -3, 3$

d.
$$\frac{(x-2)(x+2)}{(x+3)(x-3)}$$
; $x \neq -3, -2, 3$

6. Simplify and state the restrictions:
$$\frac{x-1}{x^2+6x+5} - \frac{x}{x+5}$$

a.
$$\frac{-1}{x+5}$$
; $x \neq -5, -1$

b.
$$\frac{-x^2-1}{(x+5)(x+1)}$$
; $x \neq -5, -1$

b.
$$\frac{-x^{2}-1}{(x+5)(x+1)}$$
; $x \neq -5, -1$
c. $\frac{-1}{(x+5)(x+1)}$; $x \neq -5, -1$

d.
$$\frac{-x^2-1}{x+5}$$
; $x \neq -5, -1$

7. Solve for
$$x: \frac{2}{x+2} + \frac{3}{x^2 + 5x + 6} = \frac{1}{x+3}$$

a.
$$x = 3$$

b.
$$x = -4$$

c.
$$x = -7$$

8. Simplify
$$\frac{2+3i}{6+7i}$$

a.
$$\frac{8}{13}$$

b.
$$\frac{13}{33}$$

c.
$$\frac{33+4i}{-13}$$

d.
$$\frac{33+48}{85}$$

9. Write
$$y = x^2 - 16x + 3$$
 in vertex form.

a.
$$y = (x - 8)^2 - 67$$

b.
$$y = (x-4)^2 - 1$$

c.
$$y = (x - 16)^2 + 3$$

d. $y = (x - 8)^2 - 61$

d.
$$y = (x - 8)^2 - 61$$

10. State the center and radius of the circle:
$$x^2 + y^2 + 8x - 6y - 11 = 0$$
.

a.
$$C = (-4, 3), \dot{r} = 6$$

b.
$$C = (4, -3), r = 6$$

c.
$$C = (8, -6), r = 11$$

d.
$$C = (-4, 3), r = 36$$