Working With Angles in Standard Position

An angle is in <u>Standard Position</u> when the vertex is at the origin and one ray is on the positive <u>X-axis</u> The ray on the x-axis in the <u>initial</u> side of the angle; the other ray is the <u>terminal</u> <u>side</u> of the angle.

To measure an angle in the standard position, find the **amount of rotation** from the initial side to the terminal side.

Measuring an Angle in Standard Position

Find the measure of the angle at the right.

The angle measures 20° more than a straight angle of 180°.

Since $80 + 20 = 200^{\circ}$, the measure of the angle is 200°

The measure of an angle is **positive** when the rotation from the initial side to the terminal side is in the **Counter Clockwise** direction.

The measure is negative when the rotation is _______.

Coterminal Angles

Two angles in standard position are <u>Colerminal</u> <u>angles</u> if they have the same terminal side.

Angles that have measures 135° and -225° are coterminal.

Using the Unit Circle

The <u>Unit</u> has a radius of 1 unit and its center at the origin of the coordinate plane.

Points on the unit circle are related to periodic functions

The Unit Circle

13 = 86602... 3 of 5

Suppose an angle in standard position has measure θ .

of means theta

The Cosine of Θ (cos θ) is the *x*-coordinate of the point at which the terminal side of the angle intersects the unit circle.

The <u>Sint of</u> θ (sin θ) is the y-coordinate.

Finding the Cosine and Sine of an Angle

Remember (Cosine, sine)

Find the cosine and sine of 60°.

unit circle

$$60^{\circ} \Rightarrow \frac{1}{2}, \frac{3}{2}$$

Cosine of $60^{\circ} = \frac{1}{2}$

Sine of $60^{\circ} = \frac{1}{3}$

You Try

Draw each angle in a unit circle. Then find the cosine and sine of each angle.

a. 45°

Finding Exact Values of Cosine and Sine

Find the exact values of $\cos (-120^{\circ})$ and $\sin (-120^{\circ})$.

Step 1 Sketch an angle of -120°.

Step 2 Sketch a right triangle.

Step 3 Find the length of each side of the triangle.

$$180^{\circ} - 120^{\circ} = 60^{\circ}$$

$$\frac{-1/2}{2}$$

$$0^{2} + b^{2} = c^{2}$$

$$(-1/2)^{2} + b^{2} = 1^{2}$$

$$b^{2} = 1 - .25$$

$$b^{2} = .75$$

$$b = \sqrt{.75} = .8660035...$$

•							
						•	
		•					
					*,		
			41				
	*						
			•				

Math III		
Notes 5-2	Radian	Measure

Name	Key)	
Date		Period _	

Using Radian Measure

A Clottal and of a circle is an angle with a vertex at the center of a circle.

An <u>in tercepted curc</u> is the portion of the circle with endpoints on the sides of the central angle and remaining points within the interior of the angle.

Because the circumference of a circle is $2\pi V$, there are 2π radians in any circle. Since 2π Yadians = 300° and therefore π radians = 180° you can use a proportion such as $\frac{d^{\circ}}{180^{\circ}} = \frac{r \text{ radians}}{\pi \text{ radians}}$ to convert between degrees and radians.

Using a Proportion to Convert Degrees to Radians

a. Find the radian measure of an angle of 60°.

$\frac{60}{180} = \frac{r}{11}$	Write a proportion.
100 TT = 180. V	Write the cross-products.
$V = \frac{180}{180}$	Divide each side by 180.
$r = \sqrt[4]{3} \times 1.05$	Simplify.
An angle of 60° meas	surss TT/3 or 1.05 vadians

$$C = T/d$$
 or $T = C/d$

b. Find the degree measure of $\frac{5\pi}{2}$ radians.

$\frac{5\pi}{a}/\pi = \frac{d}{180}$	Write a proportion.				
$\frac{5T}{3}(180) = T(d)$	Write the cross-products.				
5.180.77 = d	Divide each side by π .				
450° = d	Simplify.				
In angle of 511/2 radians measures 450°					

You Try:

a. 85° to radians.

$$\frac{85}{180} = \frac{r}{11}$$
 $85\pi = r \cdot 180$
 $85\pi = r$
 180
 $r = 1.48$

b. 2.5 radians to degrees.

$$\frac{d}{180} = \frac{2.5}{17}$$

$$d\pi = 2.5(180)$$

$$d = 143.24^{\circ}$$

Converting Between Radians and Degrees

To convert degrees to radians multiply by $\frac{\pi \text{ radians}}{180^{\circ}}$.

To convert radians to degrees multiply by $\frac{180^{\circ}}{\pi}$ radians

Example

Find the degree measure of an angle of $-\frac{3\pi}{4}$ radians.

$$-\frac{3\pi}{4} \cdot \frac{180}{\pi} = -135^{\circ}$$

You can find the <u>Sine</u> and <u>COSine</u> of angles in radian measure by using the calculator in radian mode or by using your unit circle.

Finding Cosine and Sine of Radian Measures

Find the exact values of $\cos(\frac{\pi}{4} \text{ radians})$ and $\sin(\frac{\pi}{4} \text{ radians})$ using the unit circle and approximate values using the calculator.

Finding the Length of an Arc

For a circle of radius r and a central angle of measure Θ (in radians), the length s of the intercepted arc is:

Example

Use the circle below. Find the length of *s* to the nearest tenth.

$$S = 5.3.\Pi = 7.9$$

$$b = \frac{27 \cdot 3}{3 \cdot 3} = \frac{2 \cdot 3 \cdot 17}{3 \cdot 3} = 6.3$$

5-3

Notes

The Sine Function

A sine curve is the graph of a sine function. You can identify a sine curve by its *amplitude* and *period*. Amplitude is one-half the vertical distance between the maximum and minimum values. The period is the horizontal length of one cycle.

Problem

Use the graph of $y = -3 \sin 2x$, where x is measured in radians, at the right. What are the amplitude and period of the sine curve?

Amplitude

The maximum value of the sine curve is 3.

The minimum value of the sine curve is -3.

One-half the difference of these values is $\frac{(3-(-3))}{2} = \frac{6}{2} = 3.$

The amplitude of the curve is 3.

Period

Between 0 and 2π , the graph cycles 2 times.

To get the length of one cycle, divide 2π by the number of cycles between 0 and 2π .

The period of the curve is $\frac{2\pi}{2} = \pi$.

The amplitude equals the absolute value of

1 cycle

1 cycle

max

The **amplitude** equals the absolute value of the coefficient of the function.

The number of cycles between 0 and 2π equals the coefficient of x in the function.

Summary

For all sine functions written in the form $y = a \sin b\theta$, where $a \ne 0$, b > 0, and θ is measured in radians:

amplitude =
$$|a|$$

period =
$$\frac{2\pi}{b}$$

Exercises

Find the amplitude and period of each sine function.

1.
$$y = \frac{1}{2} \sin 3\theta$$

cump: $\frac{1}{2}$ p: $\frac{2\pi}{3}$

$$2. y = \sin 5\theta$$

$$3. \quad y = 4\sin\frac{4}{3}\pi\theta$$

$$4. \ \ y = \frac{3}{2}\sin\theta$$

5.
$$y = -2\sin\frac{3}{4}\theta$$

6.
$$y = \pi \sin 2\theta$$

A: 3/2 P: 7

Prentice Hall Algebra 2 • Teaching Resources
Copyright © by Pearson Education, Inc., or its affiliates. All Rights Reserved.

* graph paper for sine function

5-3

Notes (continued)

The Sine Function

Problem

What is the graph of two cycles of $y = 2\sin\frac{1}{2}\theta$?

Find the amplitude.

Find the period of the curve.

$$a = 2$$
 and $b = \frac{1}{2}$

$$|a| = |2| = 2$$

$$\frac{2\pi}{b} = \frac{2\pi}{\frac{1}{2}} = 4\pi s$$

- Step 2 Find the minimum and maximum of the curve. Because the amplitude is 2, the maximum is 2 and the minimum is -2.
- Step 3 Make a table of values. Choose θ -values at intervals of one-fourth the period: $\frac{4\pi}{4} = \pi$.

The y-values cycle through the pattern zero-max-zero-min-zero.

θ	0	π	2π	3π	4π	5π	6π	Y	8π
У	0	2	0	-2	0	2	0	-2	0

- **Step 4** Plot the points from the table.
- **Step 5** Draw a smooth curve through the points.

Exercises

Graph each function.

7.
$$y = 2 \sin 2\theta$$

8.
$$y = \sin \frac{1}{3}\theta$$

$$9. \quad y = \frac{1}{2}\sin\theta$$

10.
$$y = -2\sin\frac{1}{2}\theta$$

11.
$$y = -\sin 3\theta$$

12.
$$y = -\frac{1}{4}\sin\theta$$

 $y = -\sin 3x$

Notes

The Cosine Function

Problem

* graph paper for cos function

What is the graph of $y = 3\cos\frac{\pi}{2}\theta$ in the interval from 0 to 2π ?

Step 1 Compare the function to
$$y = a \cos b\theta$$
.

$$a = 3$$
 and $b = \frac{\pi}{2}$

Find the amplitude.

$$|a| = |3| = 3$$

Find the period of the curve.

$$\frac{2\pi}{b} = \frac{2\pi}{\frac{\pi}{2}} = 4$$

- Step 2 Find the minimum and maximum of the curve. Because the amplitude is 3, the maximum is 3 and the minimum is -3.
- Make a table of values. Choose θ -values at intervals of one-fourth the period: $\frac{4}{4} = 1$. Step 3 The y-values cycle through the pattern max-zero-min-zero-max.

θ	0	1	2	3	4	5	6
у	3	0	-3	0	3	0	-3

- Plot the points from the table. Step 4
- Draw a smooth curve through the points. Step 5

* 200ri

Exercises

Sketch the graph of each function in the interval from 0 to 2π .

1.
$$y = \frac{1}{2}\cos 2\theta$$

$$2. \quad y = 3\cos\frac{1}{2}\theta$$

3. $y = \cos 3\theta$

amp: 1/2 period: TT

$$4. \quad y = \frac{1}{4} \cos \pi \theta$$

$$5. \quad y = -2\cos\frac{1}{2}\theta$$

$$6. y = 2 \cos 6\pi\theta$$

A = 1/4

period: 2

Notes (continued)

The Cosine Function

Solving a sine or cosine equation is similar to solving a system of two linear equations. You can graph each side of the equation. The solutions will be the points where the graphs intersect.

Problem

What are the solutions of $3\cos\frac{1}{2}\theta = 2$ in the interval 0 to 4π ?

- charge ou

Step 1 Set each side of the equation equal to y.

$$y = 3\cos\frac{1}{2}\theta$$

$$y = 2$$

- Graph each equation on the same grid. Step 2
- Between $\theta = 0$ and $\theta = 4\pi$, the graphs intersect 2 times. Step 3 Use the Intersect feature to find the coordinates of these points.

x Scale: π y Scale: 1

The solutions of $3\cos\frac{1}{2}\theta = 2$ in the interval 0 to 4π are $\theta \approx 1.68$ and 10.88.

10.
$$\cos \frac{1}{2}\pi\theta = -0.5$$

2.75, 3.53, 4.32, 5.11, 5.89
14.
$$\frac{3}{4}\cos\frac{1}{2}\pi\theta = \frac{1}{2}$$

15. $-4\cos 2\theta = 2$

13.
$$5 \cos 4\theta = 3$$

0.54, 3.46, 4.54

1.05, 2.09, 4.19, 5.24

5-4 Notes - The Cosine Function

MathBits.com

You can Wans at periodic functions how 700 tally and Vertically using the methods you have used for other functions.

g(x): horizontal translation of f(x)g(x) = f(x - h)

h(x): vertical translation of f(x)h(x) = f(x) + k

Each horizontal translation of certain periodic functions is a wall sometimes a sometimes and sometimes and sometimes and sometimes are sometimes as a sometimes and sometimes are sometimes and sometimes are sometimes as a sometimes are sometimes and a sometimes are sometimes are sometimes as a sometimes are sometimes are sometimes and a sometimes are sometimes are sometimes as a sometimes are sometimes as a sometimes are sometimes and a sometimes are sometimes are sometimes as a sometimes are sometimes as a sometimes are sometimes and a sometimes are sometimes are sometimes as a sometimes are sometimes as a sometimes are sometimes are sometimes as a sometimes are sometimes are sometimes are sometimes are sometimes are sometimes as a sometimes are someti

When Q(x) = f(y+h), the value of h is the amount of the shift left or right.

70 , the shift is 190 . If 100 , the shift is 100

Identifying Phase Shifts

What is the value of h in each translation? Describe each phase shift using a phrase such as 3 units to the left.

a.
$$g(x) = f(x-2)$$

b.
$$y = \cos(x + 4)$$

Use the graph of the parent function $y = \sin x$. Sketch each translation of the graph in the interval $0 \le x \le 2\pi$.

a. $y = \sin x + 3$

b.
$$y = \sin\left(x - \frac{\pi}{2}\right)$$

Graphing a Combined Translation

Using the graph of the parent function $y = \sin x$, sketch the translation $y = \sin(x + \pi) - 2$ in

the interval $0 \le x \le 2\pi$.

Summary - Families of Sine and Cosine Functions

Parent Function	Transformed Function
$y = \sin x$	$y = a\sin b(x - h) + k$
$y = \cos x$	$y = a\cos b(x - h) + k$

- |a| = amplitude (vertical stretch or shrink)
- $\frac{2\pi}{b}$ = period (when *x* is in radians and *b* > 0)
- h = phase shift, or horizontal shift
- k = vertical shift

Graph
$$y = \sin 2\left(x - \frac{\pi}{3}\right) - \frac{3}{2}$$

Trigonometric Identities

VIGOND methoc function is a trigonometric equation that is true for all values except those for which the expressions of either side of the equal sign are

Reciprocal Identities

The <u>COSCOINT</u> (csc), <u>Secont</u> (sec), and <u>Cotangent</u> (cot) functions are defined as reciprocals. Their domains include all real numbers Θ except those that make a denominator zero.

$$csc\Theta = \frac{1}{sin\theta}$$
 $sec\Theta = \frac{1}{cos\theta}$
 $cot\Theta = \frac{1}{tan\theta}$

Using Reciprocals

a. Find csc 60°

b. Suppose $\cos \Theta = \frac{5}{13}$. Find $\sec \Theta$.

Graphs of Reciprocal Trig Functions

csc 0 $y = \sin \Theta$

Name_____ Date Period_____

cot O

 $y = \tan \Theta$

Tangent and Cotangent Identities

$$\tan\Theta = \frac{\sin\Theta}{\cos\Theta}$$

$$\cot\Theta = \frac{\cos\Theta}{\sin\Theta}$$

$$\frac{1}{\tan \theta} = \frac{\cos \theta}{\cos \theta}$$

Pythagorean Identities

You can derive another identity from the definitions of $\cos \Theta$ and $\sin \Theta$.

The ordered pair $(cos \theta, sin \theta)$ is a point on the unit circle, and for any point

(x, y) on the unit circle $X^2 + Y^2 = 1.2$

$$\cos^2\Theta + \sin^2\Theta = 1$$

$$1 + \tan^2 \Theta = \sec^2 \Theta$$

$$1 + \cot^2\Theta = \csc^2\Theta$$